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ABSTRACT
The major post-Cassini knowledge gap concerning Saturn’s icy moon Titan is in the composition 
of its diverse surface, and in particular how far its rich organics may have ascended up the ”ladder 
of life.” The NASA New Frontiers 4 solicitation sought mission concepts addressing Titan’s habit-
ability and methane cycle. A team led by the Johns Hopkins University Applied Physics Laboratory 
(APL) proposed a revolutionary lander that uses rotors to land in Titan’s thick atmosphere and 
low gravity and can repeatedly transit to new sites, multiplying the mission’s science value from its 
capable instrument payload.

Titan is an “ocean world” that is rich in both carbon and 
nitrogen.4,5 See Table 1 for data on Titan’s environment.

FORMULATION OF THE DRAGONFLY CONCEPT
The NASA community announcement in Janu-

ary 2016 identifying Titan as a possible target for the 
fourth New Frontiers mission opened new possibilities 
in Titan exploration (Box 1). Although the exploration 
of Titan’s seas had previously been considered, notably 
by the APL-led Titan Mare Explorer (TiME) Discovery 
concept,6,7 the timing mandated by the announcement 
of opportunity precluded such a mission. Specifically, 
with launch specified prior to the end of 2025, Titan 
arrival would be in the mid-2030s, during northern 
winter. This means the seas, near Titan’s north pole, are 
in darkness and direct-to-Earth (DTE) communication 
is impossible.8 Even with the higher budget threshold of 
New Frontiers 4 ($850 million plus launch and opera-
tions costs) compared with Discovery (~$450 million 

INTRODUCTION
Saturn’s moon Titan is in many ways the most Earth-

like body in the solar system.1–3 This strange world is 
larger than the planet Mercury and has a thick nitrogen 
atmosphere laden with organic smog, which partly hides 
its surface from view. Since cold Titan is far from the 
Sun, on Titan methane plays the active role that water 
plays on Earth, serving as a condensable greenhouse gas, 
forming clouds and rain, and pooling on the surface as 
lakes and seas. Titan’s carbon-rich surface is shaped not 
only by impact craters and by winds that sculpt drifts 
of aromatic organics into long linear dunes but also by 
methane rivers and possible eruptions of liquid water 
(“cryovolcanism”).

While living things are ~70% water, and finding water 
has been a convenient initial focus for astrobiological 
investigations in the solar system, the chemical processes 
that conspire to lead to life rely on functions exerted by 
compounds of carbon, nitrogen, oxygen and hydrogen, 
with traces of sulfur and phosphorus (CHNOPS). In con-
trast to Europa (abundant in water, and perhaps sulfur), 
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plus radioisotope power source and launch costs), it 
would be challenging indeed to provide a relay space-
craft and a sea probe.

A lander with DTE communication would be possible 
at lower latitudes, however. The only detailed study of 
such a mission (see Box 2) was the 2007 Titan Explorer 
NASA Flagship Mission Study,9,10 led by the Johns Hop-
kins University Applied Physics Laboratory (APL). This 
study advocated the science that could be obtained from 
three platforms, an orbiter, a hot-air (Montgolfière) bal-
loon, and a lander. The lander (designed before Titan’s 
seas had been discovered) was intended to be delivered to 
Titan’s Belet sand sea, a large—and thus easily targeted—
dune field expected to be free of rock and gully hazards. 
After the lander’s parachute descent and landing on 
Pathfinder-like airbags (wherein if it landed on top of a 
dune, it would just roll down to the bottom), petals would 
unfold and science would begin, with cameras, a chemi-
cal analysis suite, a seismometer, and a meteorology pack-
age. Much of the science definition in the Titan Explorer 
Study was useful in formulating the Dragonfly proposal.

A scientific limitation of a single lander, however, is 
that it explores only a single location. This limitation 
can be mitigated slightly at “grab-bag” landing sites 
where geological processes have gathered samples from a 
range of areas (in Mars Pathfinder’s case, a flood deposit 
of rocks; dune sands may similarly have material from a 
range of source locations). However, a lander with some 
kind of mobility, or augmented by some mobile element 
(e.g., a “fetch” rover), would help address the challenge 
of acquiring samples from sites more interesting than the 
landing point, a site that would be most likely selected 
for safety rather than for scientific interest.

The concept of a rotorcraft lander on Titan trickle-
charging a battery for brief atmospheric flights by using 
the power from a radioisotope power source had been 

proposed some 17 years ago.11,12 At that time, the vehi-
cle was imagined to be a helicopter, a vehicle that is used 
on Earth for near-guaranteed access to a wide range of 
terrain, for personnel delivery, and for search and rescue. 
However, helicopters are mechanically complex (one 

BOX 1. OCEAN WORLDS
Although the list of candidate New Frontiers mis-
sions described in the 2013 Planetary Science Decadal 
Survey did not include a mission to Titan, the survey 
did recognize the scientific value of Titan exploration, 
advocating technology development toward a flagship 
mission. Further, the 2008 New Opportunities in Solar 
System Exploration (NOSSE): An Evaluation of the New 
Frontiers Announcement of Opportunity report advo-
cated that New Frontiers missions should be responsive 
to scientific discoveries. In January 2016, NASA intro-
duced an “Ocean Worlds” target (Titan and/or Encela-
dus) into the community notice regarding the upcom-
ing New Frontiers 4 announcement of opportunity, the 
final version of which was released in December 2016. 
That announcement defines the overarching scientific 
objectives as follows:

The Ocean Worlds mission theme is focused on 
the search for signs of extant life and/or charac-
terizing the potential habitability of Titan and/
or Enceladus.

For Titan, the science objectives (listed without 
priority) of the Ocean Worlds mission theme are:

•	 Understand the organic and methanogenic 
cycle on Titan, especially as it relates to prebi-
otic chemistry; and

•	 Investigate the subsurface ocean and/or liquid 
reservoirs, particularly their evolution and pos-
sible interaction with the surface.

Table 1. Titan’s Environment

Property Surface	Valuea

Diameter 5150 km (larger than Mercury)
Surface gravity 1.35 m/s2 (1/7 Earth)
Distance from Saturn 1.2 million km (20 Saturn radii)
Rotation period (Titan day or Tsolb) 15.945 days (same as orbit period around Saturn)
Atmospheric pressure 1.47 bar (note: Earth surface pressure = 1.01 bar)
Atmospheric temperature 94 K
Atmospheric density 5.4 kg/m3 (4× Earth sea level air)
Atmosphere composition 95% nitrogen, 5% methane, 0.1% hydrogen, many trace organics
Speed of sound 195 m/s
Atmospheric viscosity 6 × 10–6 Pa-s (~3× smaller than Earth air)
Obliquity 26° to Sun (equatorial plane is ~ Saturn ring plane)
Surface illumination ~1000× less than Earth (or ~1000× full moonlight) predominantly in red and near-IR light;  

visibility near surface ~10 km
a Atmospheric properties vary with altitude; surface values shown here.
b Tsol, Titan solar day.
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reason that this concept was considered only briefly in 
the Flagship Study).

However, technology developments in the last two 
decades, notably the revolution in availability of multi-
rotor dronesa made possible by modern compact sensors 
and autopilots as well as the development of sensing and 
control capabilities for autonomous landing and site 
evaluation for planetary landers, made a quadcopter or a 
similar vehicle a much more feasible prospect in 2016. In 
contrast to helicopter flight, multi-rotor flight with dif-
ferential throttling effected purely electrically by motor 
speed control is mechanically simple and therefore lends 
itself to planetary application.

A brief evaluation using a para-
metric rotorcraft power model13 

a It is interesting to recall that the first 
practical helicopter to fly in the United 
States, in 1924, was a multi-rotor vehi-
cle, the “flying octopus” (see https://
en.wikipedia.org/wiki/De_Bothezat_
helicopter). Although this vehicle flew 
over 100 times with as many as four pas-
sengers and broke many records, the pilot 
workload to achieve control by differen-
tial thrust on four rotors each with vari-
able pitch was formidable. Although the 
same capabilities were not achieved for 
another 20 years, the Army Air Service 
scrapped the project. It is also interest-
ing to note that while hovering drones on 
Earth have been enabled by high-power-
density battery technology, specifically 
the 21st-century emergence of lithium-ion 
and lithium-polymer cells, in Titan’s low 
gravity and thick atmosphere, compa-
rable vehicles (if kept warm) would not 
need such high power or energy densities.

indicated that a vehicle of representative size and power 
could in fact achieve unparalleled regional mobility on 
Titan, and the Dragonfly concept was born. Initially it 
was imagined that the vehicle might have a flotation 
ring, to permit landing on one of Titan’s lakes, but a 
more conventional box-with-skids layout soon emerged 
once it was decided that operations on dry land would be 
the focus of the mission. A constraint in this application 
that is somewhat unusual for rotorcraft is the necessity 
to be packaged in a hypersonic aeroshell. The geomet-
ric trade of unblocked rotor disk area versus number of 
rotors14 with such a constraint suggests that, in fact, four 
is optimal.

Figure 1. Dragonfly mission concept. After delivery from space in an aeroshell and parachute descent, the vehicle lands under rotor 
power and deploys a high-gain antenna for DTE communication. Powered by a radioisotope power supply that provides heat and 
trickle-charges a large battery, the vehicle can operate nearly indefinitely as a conventional lander but can also make periodic brief 
battery-powered rotor flights to new locations.

Backshell

3.7-m-diameter heatshield

Figure 2. Although the challenges of delivering a vehicle into the Titan atmosphere are not 
the subject of this article, the design of the cruise stage and entry system demanded signifi-
cant effort. The rotorcraft is launched “upside-down” with the stowed skids and the forward 
face of the aeroshell upward on the launch vehicle.
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Although there is a small aerodynamic penalty in 
the “over–under” quad octocopter layout (with a top 
and bottom pair of motors/rotors at each corner of the 
vehicle) compared with a “pure” quad, the octocopter 
configuration is more resilient, being able to tolerate the 
loss of at least one rotor or motor.

The architecture of the sample acquisition system, to 
be provided by Honeybee Robotics, was another major 
trade: a sampling arm like those used on Viking, Phoe-
nix, or the Mars Science Laboratory, was considered, but 
it would be expensive and heavy and presented a single-
point failure. Instead, two sample acquisition drills, one 
on each landing skid, with simple 1-degree-of-freedom 
actuators were selected. These provide a sample choice 
and redundancy. Titan’s dense atmosphere permits the 
sample (whether sand, icy drill cuttings, or other mate-
rial) to be conveyed pneumatically15 by a blower—the 
material is sucked up through a hose and is extracted in a 
cyclone separator (much like in a Dyson vacuum cleaner) 
for delivery to the mass spectrometer instrument.

The scientific payload (Box 3) for Dragonfly is in 
many respects a (large) subset of that identified by a 

NASA-appointed science definition team for the 2007 
Flagship Study lander, embracing geophysical, imaging, 
and meteorological studies, as well as the centerpiece 
science of surface chemistry. Novel elements include 
measurement of atmospheric hydrogen as a possible 
biomarker16 and the capability of making rapid elemen-
tal composition measurements via neutron-activated 
gamma-ray methods17 without requiring sample 
ingestion—a particularly powerful capability for a relo-
catable lander. Particular sites of interest deserving closer 
investigation with ingested samples include those where 
liquid water (e.g., from impact melt) has interacted with 
Titan’s organic haze deposits to produce18,19 pyrimidines 
(bases used to encode information in DNA) and amino 
acids, the building blocks of proteins. In addition to mul-
tiplying the surface chemistry science value by visiting 
multiple sites, Dragonfly’s capabilities for meteorological 
measurements and imaging during flight are comparable 
with those of a balloon—the revolutionary single-ele-
ment Dragonfly concept affordably fulfils most of the 
science objectives met by two of the elements (lander 
plus Montgolfière) in flagship architectures.

BOX 2. PROMINENT POST-CASSINI MISSION STUDIES AND PROPOSALS
While many smaller studies are described in conference 
papers or similar (see Ref. 46 for a review), the following list 
identifies major efforts. The first suggestion of Titan heli-
copters (at least the first mention of which we are aware) 
falls into this former category, a passing mention of small 
fetch vehicles to return surface samples to a rather improb-
able 8-metric-ton nuclear-thermal reactor-powered space-
plane, described by Zubrin in a 1990 conference paper.47

•	 1999	 Prebiotic	 Material	 in	 the	 Outer	 Solar	 System	
Campaign	Science	Working	Group	(CSWG). Various 
discipline-oriented CSWGs were a predecessor of the 
Planetary Science Decadal Survey, the first of which 
convened in 2003, before Cassini’s arrival informed 
future priorities. Nonetheless, the CSWG recognized48 
the potential for aerial mobility at Titan and the impor-
tance of Titan’s surface chemistry. The first thinking 
about heavier-than-air exploration, and rotorcraft in 
particular, took place in this period.

•	 2006	TiPEx—Titan	Prebiotic	Explorer.49 TiPEx was a 
Jet Propulsion Laboratory (JPL) concept, not externally 
funded, for a Montgolfière (hot-air) balloon and orbiter. 
Surface chemistry was to be addressed by dropping a 
harpoon sampler to be winched back up to the balloon 
gondola. Earlier JPL studies had considered a more com-
plex dirigible balloon (airship).

•	 2007	 Titan	 Explorer	 Flagship. This APL-led NASA 
study10,11 advocated a lander, Montgolfière, and aero-
captured orbiter to address the widest range of scientific 
disciplines and spatial scales. The lander would address 
surface chemistry, relieving the Montgolfière of the risks 
of near-surface operations and sampling. This was the 
first study to feature a NASA-appointed science defini-

tion team (SDT). The SDT assigned a higher scientific 
priority to the lander than to the Montgolfière—surface 
chemistry and internal structure were considered more 
important goals.

•	 2009	 Titan	 Saturn	 System	 Mission	 (TSSM). This 
JPL-led study50 built on Titan Explorer, but with a 
headquarters-mandated architecture including Euro-
pean Space Agency-provided in situ elements (a Mont-
golfière and a short-lived battery-powered lake lander), 
requiring Enceladus as well as Titan science, and prohib-
iting aerocapture. A related architecture was explored 
in a very preliminary way in the European-led TandEM 
(Titan and Enceladus Mission) proposal.51

•	 2010	 AVIATR. This concept52 was for an airplane 
at Titan, powered by Advanced Stirling Radioisotope 
Generators (ASRGs) to fly continuously to perform 
an aerial survey with DTE communication. Although 
stimulated by the 2010 Discovery solicitation, this idea 
proved incompatible with the Discovery budget.

•	 2010	 TiME	 (Titan	 Mare	 Explorer). This APL–
Lockheed Martin proposal6,7 was selected for a Phase A 
study in the 2010 Discovery solicitation. It was a capsule 
that would float in Ligeia Mare, Titan’s second-largest 
sea, using ASRGs for power and DTE communication 
and would perform (liquid) composition measurements, 
imaging and sonar surveys, and meteorological 
observations.

It is evident that Dragonfly responds to long-standing sci-
entific priorities and ideas. Remarkably, the combination of 
long-term landed science and occasional aerial flight offers 
in a single platform most of the combined capabilities of both 
the lander and balloon elements of the 2007 Flagship Study.
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ENERGY IS EVERYTHING
It was recognized, in the same study12 that articulated 

the trickle-charged helicopter idea, that energy is the 
fundamental limitation in Titan surface exploration. In 
that environment, solar power is impracticable (sunlight 
at Titan’s surface is ~100× weaker than at Earth, due to 
Titan’s distance from the Sun, and is further diminished 
by a factor of ~10 by Titan’s hazy atmosphere20), and the 
strong cooling provided by Titan’s dense 94-K atmo-
sphere requires sustained heat for thermal management.

The vehicle body, like the Huygens probe, has thick 
insulation around its main electronics box, and “waste” 
heat from the Multi-Mission Radioisotope Thermoelec-
tric Generator (MMRTG) is tapped to maintain this 
interior (and most particularly, the battery) at benign 
temperatures. On the other hand, the sensitive gamma-
ray detector of the DraGNS instrument (see Box 3) is 
mounted outside this warm box, exploiting the dense 
cold atmosphere to attain low operating temperatures 
without needing a mechanical cryocooler.

Missions with high-gain antennas (HGAs) empiri-
cally require about 5 mJ per bit per astronomical unit21 
to acquire and send science data to Earth [the linear 
distance dependence is an interestingly emergent “allo-
metric” correlation (see also Ref. 22) that results from 
engineering efforts to defeat the inverse square law—
spacecraft at greater distances tend to have larger anten-

nas, for example]. A mission 
following on from Huygens should 
logically do better than Huygens. 
The Huygens probe returned 
about 100 MB of data (~3.5 h of 
an S-band link at 8 kbps, relayed 
to Earth by the Cassini orbiter23). 
To do, say, 100 times better, 
10 GB, would therefore require 
at 10 AU about 0.5 GJ of energy 
(140,000 Wh, far beyond the capa-
bility of practical stored energy 
systems like primary batteries) and 
necessitates radioisotope power.

The free parameter in the 
system design is the mission dura-
tion. For the steady output from a 
radioisotope power source, the mis-
sion energy, and thus data return, 
scales directly with duration. One 
year of (say) 100 W output corre-
sponds to 3 GJ of energy.

The New Frontiers 4 announce-
ment of opportunity permits the 
use of up to three MMRTGs. Since 
these are relatively heavy, and the 
waste heat (some 2 kW) requires 
careful management (although 

some heat is in fact essential for this application), it was 
obvious that only a single unit should be used.

Slow degradation of the thermoelectric converter, 
in addition to the decay of the plutonium heat source, 
means the electrical power output at Titan is consider-
ably lower than at launch, 9 years earlier. Furthermore, 
uncertainty in that degradation (known only from 
ground tests and from the ~5 years of operation of the 
MMRTG on Curiosity24) requires healthy margins on 
the power budget. An electrical power output of about 
70 W from a single MMRTG is anticipated at Titan. 
While this is indeed low, it may be recalled that both 
Viking landers operated for years on this power level. 
The key is that landed operations are undemanding (no 
propulsion or attitude control) and flexible.

Although sample acquisition and chemical analysis 
are somewhat power-hungry activities, they require only 
a few hours of activity. Science activities that require 
continuous monitoring, namely meteorological and seis-
mological measurements, although of low power, actually 
dominate the payload energy budget. Indeed, for these 
extended periods, the lander avionics are powered down 
and data acquisition is performed only by the instru-
ment, to maximize the rate of recharge of the battery.

Except during polar summer or winter, operations of 
a lander on Titan with DTE communication are paced 
by the Titan diurnal cycle. A Titan solar day (Tsol) is 
384 h long (16 Earth days). Seen from Titan, Earth in 

Figure 3. The Dragonfly configuration for atmospheric flight (with the gray circular HGA 
stowed flat). Note the aerodynamic fairing in front of the HGA gimbal. The cylinder at rear is 
the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). A sampling drill mech-
anism is visible in the nearside skid leg, and forward-looking cameras are recessed into the 
tan insulating foam forming the rounded nose of the vehicle. The rotor wing section and 
planform are designed for the Titan atmosphere.
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the sky is always within 6° of the Sun. Interaction with 
Earth, and logically any operations requiring real-time 
observation (such as atmospheric flight), occur during 
the day, and nighttime activities are generally mini-
mal and power can be devoted to recharging the bat-
tery. Thus, a logical maximum size of the battery is that 
which completely captures MMRTG power during the 
Titan night, or 75*192 = 14 kWh. Such a battery—about 
a quarter of the size of the battery in a Tesla electric 
car—would be rather massive (140 kg), assuming a rep-
resentative specific energy metric for space-qualified bat-
teries of 100 Wh/kg. In practice, a smaller battery may 
be chosen, sacrificing some energy-harvesting efficiency 
for lower mass and cost. It should be emphasized that 
while the mission has been designed to function with 
the MMRTG, other comparable radioisotope power 
systems,25 such as the Advanced Stirling Radioisotope 
Generator (ASRG) or an enhanced MMRTG with 

higher conversion efficiencies than the MMRTG, would 
permit an even higher data return or rate of flight.

ATMOSPHERIC FLIGHT PERFORMANCE AND 
AERODYNAMIC DESIGN

Titan’s atmosphere is both denser (4.4×) and colder 
(94 K) than Earth’s. The composition is predominantly 
(95%) nitrogen, and the low temperature means molecu-
lar viscosity is rather lower than for our air. The com-
bination of higher density and lower viscosity means 
that an airfoil of given size and speed is operating at a 
Reynolds number that is several times higher than on 
Earth. To a first order, then, the ~1 m rotors of Dragon-
fly should resemble rotors of much-larger-scale systems 
on Earth—in fact, a blade section more typically used 
in terrestrial wind turbines has been adopted. Not only 

BOX 3. DRAGONFLY SCIENCE PAYLOAD
The Dragonfly science payload includes the following 
instruments:

•	 DraMS—Dragonfly	 Mass	 Spectrometer	 (Goddard	
Space	 Flight	 Center). A central element of the pay-
load is a highly capable mass spectrometer instrument, 
with front-end sample processing able to handle high-
molecular-weight materials and samples of prebiotic 
interest. The system has elements from the highly suc-
cessful SAM (Sample Analysis at Mars) instrument on 
Curiosity, which has pyrolysis and gas chromatographic 
analysis capabilities, and also draws on developments for 
the ExoMars/MOMA (Mars Organic Material Analyser).

•	 DraGNS—Dragonfly	 Gamma-Ray	 and	 Neutron	
Spectrometer	 (APL/Goddard	 Space	 Flight	 Center). 
This instrument allows the elemental composition of 
the ground immediately under the lander to be deter-
mined without requiring any sampling operations. Note 
that because Titan’s thick and extended atmosphere 
shields the surface from cosmic rays that excite gamma-
rays on Mars and airless bodies, the instrument includes 
a pulsed neutron generator to excite the gamma-ray 
signature, as also advocated for Venus missions. The 
abundances of carbon, nitrogen, hydrogen, and oxygen 
allow a rapid classification of the surface material (for 
example, ammonia-rich water ice, pure ice, and carbon-
rich dune sands). This instrument also permits the 
detection of minor inorganic elements such as sodium or 
sulfur. This quick chemical reconnaissance at each new 
site can inform the science team as to which types of 
sampling (if any) and detailed chemical analysis should 
be performed.

•	 DraGMet—Dragonfly	 Geophysics	 and	 Meteorology	
Package	(APL). This instrument is a suite of simple sen-
sors with low-power data handling electronics. Atmo-
spheric pressure and temperature are sensed with COTS 
sensors. Wind speed and direction are determined with 

thermal anemometers (similar to those flown on several 
Mars missions) placed outboard of each rotor hub, so that 
at least one senses wind upstream of the lander body, 
minimizing flow perturbations due to obstruction and by 
the thermal plume from the MMRTG. Methane abun-
dance (humidity) is sensed by differential near-IR absorp-
tion, using components identified in the TiME Phase A 
study. Electrodes on the landing skids are used to sense 
electric fields (and in particular the AC field associated 
with the Schumann resonance, which probes the depth 
to Titan’s interior liquid water ocean) as well as to mea-
sure the dielectric constant of the ground. The thermal 
properties of the ground are sensed with a heated tem-
perature sensor to assess porosity and dampness. Finally, 
seismic instrumentation assesses regolith properties (e.g., 
via sensing drill noise) and searches for tectonic activity 
and possibly infers Titan’s interior structure.

•	 DragonCam—Dragonfly	Camera	Suite	(Malin	Space	
Science	Systems). A set of cameras, driven by a common 
electronics unit, provides for forward and downward 
imaging (landed and in flight), and a microscopic imager 
can examine surface material down to sand-grain scale. 
Panoramic cameras can survey sites in detail after land-
ing: in many respects, the imaging system is similar to 
that on Mars landers, although the optical design takes 
the weaker illumination at Titan (known from Huygens 
data) into account. LED illuminators permit color imag-
ing at night, and a UV source permits the detection of 
certain organics (notably polycyclic aromatic hydrocar-
bons) via fluorescence.

•	 Engineering	 systems. Data from the inertial measure-
ment unit (IMU) may be used to recover an atmospheric 
density profile via the deceleration history during entry. 
IMU and other navigation data may provide constraints 
on winds during rotorcraft flight. Additionally, the radio 
link via Doppler and/or ranging measurements may shed 
light on Titan’s rotation state, which, in turn, is influ-
enced by its internal structure.
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is this section aerodynamically efficient, it is also very 
tolerant of surface roughening (typically, in the case of 
wind turbines, due to insect impingement), making it a 
robust choice for Titan.

The low temperature also means that the speed of 
sound26 in Titan’s atmosphere is low (~194 m/s versus 
340 m/s on Earth). This could be a factor for large or fast-
rotating propellers in that severe performance loss occurs 
as the tip Mach number approaches unity. In practice, a 
tip Mach number of 0.4 is not a strong design factor.

An informal guide to determining the vehicle capa-
bility in early development was the specification that it 
should offer revolutionary science mobility to access a 
variety of geological terrains, being able to fly, in one 
hop, farther than any Mars rover has driven in a decade 
(i.e., about 40 km). Flight performance analysis14 sug-
gested that the maximum-range speed (Fig. 4) would be 
about 10 m/s, and that flight power for a representative 
420-kg vehicle at this speed would be a little over 2 kW. 
A 30-kg battery at 100 Wh/kg could theoretically permit 
flight for 2 h and achieve some 60 km in range. In prac-
tice, battery performance would be heavily margined for 
safety and performance would be lower. Flight power 
scales roughly as mass 1̂.5, so a more massive vehicle 
would have lower endurance or would require a larger 
battery. Although the vehicle configuration is designed 
overall as a planetary lander with a somewhat boxy 
appearance, some streamlining is implemented (e.g., 
a rounded nose and fairings around the skid-leg drill 
mechanisms) to minimize aerodynamic drag in flight. 
For obvious reasons, the HGA is stowed during flight.

In addition to horizontal mobility, there is science 
value in achieving altitude. Of particular interest is 
the possibility of profiling the planetary boundary layer 
(PBL) via ascent to 500 m to 4 km altitude. The diur-
nal PBL thickness was measured during the Huygens 
descent to be ~300 m high,27 although a possible fea-
ture28 at ~3 km has been identified and attributed to 

a possible seasonal PBL,29 and 
it is this quantity that appar-
ently controls the spacing of 
dunes on Earth and Titan.28 
Although vertical ascent 
is possible, vertical descent 
is not (except at very low 
speeds, as for landing) since 
the vortex ring state, wherein 
the vehicle falls through its 
own downwash, creating an 
unstable condition, must be 
avoided. Descending verti-
cally at very low speeds would 
also be very energy inefficient. 
Nominally, then, profiling 
flights30,31 would be performed 
with normal forward motion, 

ascending or descending at about 20° to the horizon-
tal. These flights could be performed during traverses to 
new locations, or if a local vertical profile with minimal 
horizontal displacement were desired, a spiral ascent and 
descent could be executed with return to the original 
landing site.

Titan’s near-surface winds are predicted by global cir-
culation models (GCMs) to be only 1–2 m/s maximum31 
(about the same as those measured by Doppler tracking 
of the Huygens probe), and, thus, the 10-m/s flight tran-
sit speed means that wind effects on range are minor.

SCIENCE MISSION PROFILE
Titan’s thick, extended atmosphere in fact allows a 

rather wide corridor of entry flight-path angle (Huygens 
entered at –65°), making a rather wide annulus of target 
possibilities, depending on the direction of arrival. Aero-
thermodynamic considerations weakly favor arrival on 
Titan’s trailing side (Titan is tidally locked to Saturn) 
to minimize the entry speed and, thus, heat loads and 
deceleration.

Arrival at Titan in the mid-2030s with DTE com-
munication suggests a low-latitude landing site. This 
requirement means a similar location and season to 
the Huygens descent in 2005, so the wind profile and 
turbulence characteristics measured by the Huygens 
probe32,33 are directly relevant. Furthermore, the sand 
seas34 that girdle Titan’s equator are both scientifically 
attractive and favorable in terms of terrain characteris-
tics for landing safety—indeed, it was for these reasons 
that the 2007 Flagship Study identified these dune fields 
as the preferred initial target landing area.

The radar characteristics of Titan’s dune fields35 are 
such that there is relatively little small-scale roughness. 
Various methods to recover large-scale topography (altim-
etry, stereo imaging, and radarclinometry) suggest that 
Titan’s dunes may be up to 150 m high with area-averaged 
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Figure 4. Rotorcraft power curve for a representative vehicle mass of 420  kg on Titan. The 
induced power required for rotor thrust falls toward higher speed, whereas the body drag 
increases quadratically and eventually dominates. These competing factors define the maxi-
mum endurance speed (the minimum in the curve ~8  m/s) and the maximum-range speed 
(where the tangent to the curve passes through the origin, corresponding to ~10 m/s). Titan’s 
dense atmosphere and low gravity means that the flight power for a given mass is a factor of 
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slopes of about 5°.36 Terrestrial analogs, for example the 
Namib sand sea in southern Africa,37 have linear dunes 
of the same morphology and spacing (3–4 km) and height 
with flat inter-dune areas: analysis of digital elevation 
models [e.g., the Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer (ASTER) Global Digi-
tal Elevation Model (GDEM), with 30-m postings] shows 
that at this scale some 50% of the area has a slope of 1° or 
less, and 95% has a slope less than 6°. For a vehicle able 
to tolerate modest slopes (e.g., 10°), there are certain to 
be ample locations that permit safe landing. In contrast 
to conventional planetary landers with rocket propulsion, 
which have limited divert capability, on Titan a rotor-
craft lander on initial descent has sufficient endurance 
to scan a swath of many kilometers of terrain and then 
backtrack to the most favorable location.

Once safe landing on arrival is achieved, the rotorcraft 
mobility capabilities can be exercised progressively—
for example, first making a brief hop for a few seconds 
within the immediate vicinity of the landing site where 
the terrain will be known from panoramic and/or 
descent imaging. Depending on the heterogeneity of the 
surface (e.g., patches of sand), a small displacement of a 
few meters or tens of meters may enable the sampling of 
different materials.

Then, flights of progressively increasing duration, 
range, and/or height can be made, returning to the origi-
nal, known-safe, landing site. These flights can assess 

the performance of various sensors—for example, an 
initial hop may be made using inertial guidance alone, 
whereas later flights use optical navigation only after the 
quality of in-flight imaging and the abundance of suit-
able landmarks on Titan have been verified.

If the Titan terrain is as benign as the Namib analog 
suggests, safe landing zones can be more or less guaran-
teed between the dunes, and the full flight range of the 
vehicle can be exploited. However, a more conservative 
posture is as follows, based on a one-way flight range R 
(which itself will be a healthy margin beneath the actual 
vehicle capability):

1. A second landing zone (B) is identified by ground 
analysis of reconnaissance imaging, a distance R/3 
or less away from the initial landing site A.

2. The vehicle makes a sortie over this zone using its 
sensors (lidar for terrain roughness, imaging, etc.) 
and returns to the original landing site (A).

3. Analysis on the ground of the sensor data confirms 
one or more safe sites within zone B (or if no satisfac-
tory site is found, return to step 1).

4. A candidate third landing zone (C) is identified in 
reconnaissance imaging, a distance 2R/3 away from A.

5. The vehicle makes a sensing sortie over (C) but 
lands at (B).

Figure 5. Initial descent. After release from the entry system and parachute, the vehicle can traverse many kilometers at low altitude 
using sensors to identify the safest landing site. The schematic is shown against an aerial image of the Namib sand sea, a geomorpho-
logical analog of the Titan landing site, with ~100-m-high dunes spaced by several kilometers.
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In this way, the mission need not commit to landing 
sites that have not first been assessed to be safe. This 
conservative approach, while taking longer to achieve 
a given multi-hop traverse range, enables the contem-
plation of much rougher terrains that may be associated 
with more appealing scientific targets (e.g., cryovolcanic 
features or impact melt sheets where liquid water may 
have interacted with organics on Titan).

At each new landing site, the HGA is unstowed and 
downlink begins. Priority data might include flight per-
formance information and aerial imaging of the land-
ing site to confirm its exact location in maps made 
from prior reconnaissance. A quick-look site assessment 
would use thermal measurements on the landing skids to 
estimate the surface texture (e.g., solid versus granular, 
damp versus dry); dielectric constant obtained by mea-
suring the mutual impedance between electrodes on the 
skids would similarly constrain the physical character of 
the surface material. These measurements would take 
only seconds to minutes. Over a 
period of a few hours, the neutron-
activated gamma-ray spectrometer 
would determine the bulk ele-
mental composition of the land-
ing site, allowing identification 
among a number of basic expected 
surface types (e.g., organic dune 
sand, solid water ice, and frozen 
ammonia-hydrate).

Armed with this information, 
and with imaging to characterize 
the geological setting, the science 
team on the ground might elect 
to acquire a surface sample with 
one or the other drills and ana-
lyze it with the mass spectrometer. 
Drilling and sample analysis are 
relatively energy-intensive tasks, 
which might be deferred into the 
Titan night when (unless the bat-

tery is large enough to cap-
ture the full MMRTG output) 
excess energy is available. 
Other nighttime scientific 
activities include seismological 
and meteorological monitoring 
and local (e.g., microscopic) 
imaging using LED illumina-
tors as flown on Phoenix and 
Curiosity (e.g., Ref. 38). These 
illuminators would permit 
better color discrimination of 
Titan surface materials (since 
the daytime illumination, fil-
tered by the thick atmospheric 
haze, is predominantly of red 

light) and could use UV illumination to help iden-
tify surface organic material via fluorescence,39 which 
is common in the polycyclic aromatic hydrocarbons 
expected in the dune sands.

If a site proves to be of interest, the vehicle (better 
thought of as a relocatable lander than an aircraft) can 
remain at a given location for as long as desired, per-
haps performing more extensive imaging studies with 
its panoramic cameras or sampling at different depths. 
It could also “shuffle” distances of a few meters to repo-
sition the skids/drills or to obtain a different camera 
view. Observing the methane humidity over one or 
more Titan diurnal periods would inform the extent to 
which methane moisture is exchanged with the surface 
(an analysis analogous to that performed by Curiosity 
for water vapor on Mars40). Note that although Drag-
onfly lacks a robotic arm, it can nonetheless manip-
ulate surface materials to understand their physical 
character. One example is that the seismometer can 
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observe the noise transmitted through the ground 
during drilling, diagnostic of the mechanical proper-
ties of the regolith and possibly indicating near-surface 
layering. Another example is that one or more rotors 
can be spun (at progressively higher speeds) to induce 
a known downwash on the surface material, and the 
speed at which sand grains begin to move (indicated 
either by imaging or electric field measurements) can 
thereby be determined. This “saltation threshold” is a 
key parameter in interpreting the large-scale morphol-
ogy and orientation of Titan’s dunes in global circu-
lation models.31,41 There are indications that, as on 
Earth, since large dunes take tens of thousands of years 
to form or reorient, the dune pattern carries a memory 
of past climate;42 models suggest that astronomical 
changes (Croll–Milankovitch cycles, similar to those 
on Earth and Mars) may alter Titan’s wind patterns 
and indeed the geographical distribution of its surface 
liquids. Decoding the dune pattern, however, requires 
good knowledge of the saltation threshold (estimated 
to be around 1 m/s,43 but laboratory measurements44 
on Earth are limited in their capability to replicate 
Titan conditions, to say nothing of our ignorance of 
the exact sand composition and the possible role of tri-
boelectric charging45).

At any given landing site, then, there is scope for rich 
scientific investigation in a number of disciplines. This 
scientific potential is multiplied by the dozens of possible 
landing sites that could be visited in a mission lasting a 
couple of years or more. The output from an MMRTG 
degrades slowly, and there are no major consumables on 
the vehicle, so the surface mission duration is not heav-
ily constrained.

CONCLUSIONS
NASA is presently considering the Dragonfly con-

cept, among many other proposals for missions to Venus, 
Titan, Enceladus, comets, and other targets. The authors 
hope it is selected in late 2017 for a Phase A study and 
ultimately for flight. Regardless of the outcome of the 
New Frontiers 4 solicitation, however, Dragonfly has 
introduced a revolutionary new paradigm in planetary 
exploration by demonstrating a detailed implementation 
proposal for unparalleled regional mobility. Having laid 
out this concept, the authors predict that henceforth it 
may be difficult to imagine a Titan lander mission that 
does not exploit this capability.
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